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SUMMARY

An experimental investigation at low airspeeds was made of the

filling effect observed when a scree_ or similar resistance is placed

across a diffuser. The filling effect is found to be real in that

screens can prevent separation or restore separated flow in diffusers

even of extreme divergence and to depend principally on screen location

and pressure-K1rop coefficient of the screen. Results are given for

three different diffusers of circular cross section with a variety of

screen arrangements. Effects of single screens and multiple screens

are shown. The mechanics of the filling effect is explained, and

possible efficiencies are discussed. Results of arrangements of

multiple screens in wide-angle diffusers are given to show a possible

application to damping screens as used in wind tunnels to reduce

turbulenc e.

INTRODUCTION

An investigation of diffuser-screen combinations was undertaken

at the National Bureau of Standards under the sponsorship and with the

financial assistance of the National Advisory Committee for Aeronautics

in an effort to clarif,y the so-called "filling effect" commonly

observed when a screen or similar resistance is placed at the mouth

of a wide--angle subsonic diffuser.

A wide-angle diffuser is defined herein as one in which the cross--

sectional area increases so rapidly in the direction of flow that

separation is to be expected. Under ordinary conditions this would

include all conical diffusers with walls diverging with a total included

angle greater than about 8° .

About the time that damping screens for reducing turbulence were

found to be of use in the larger wind tunnels, the NACA adopted a

rapidly expanding section Just ahead of a screen to reduce the loss

through the screen. It appears to have been this use of a wide-angle

diffuser followed by a screen that first aroused general curiosity

and some skepticism about the possibility of filling diffusers by this
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means. Intuitively it could be seen that a screen would have a tendency
to spread the flow by its dammingeffect, but the details of the effect
were not clear. As far as is known, the first quantitative study of the
effect was madeby McLellan and Nichols (reference 1), who were concerned
with the practical advantages of wide-angle diffusers Just ahead of heat
exchangers. They showedthat the filling effect was real and that high
diffuser efficiencies could be obtained but did not study the flow
phenomenain sufficient detail to explain the effect. Later Squire
and Hcgg (reference 2) investigated several diffuser--screen combinations
for reducing turbulence in wind tunnels, including cases when screens
were distributed through a diffuser. They demonstrated interesting and
useful effects but did not explain the reason that screens produced the
observed effects.

It was the purpose of the present work to investigate the phenomena
of flow through diffusers containing screens in sufficient detail to
clarify the mechanics of the process and to show the way in which best
advantage can be taken of the filling effect of screens or similar
resistances. From the practical standpoint, interest is limited malnly
to screens of low solidity when the pressure drop is of the order of the
dynamic pressure. Whenthe pressure drop is many times the dynamic
pressure, the flow through all pores of the screen is determined by the
pressure drop and is nearly equal regardless of the condition of the
approach flow. The investigation has therefore been restricted to
screens of low solidity. Fine screens have been used to permit measure--
ments close to a screen, and diffusers of circular cross section have
been used to avoid corners. The experiments were conducted with air at
relatively low speeds at which compressibility can be neglected. It
is hoped that the information obtained is adequate to indicate where
diffuser-screen combinations can be used to advantage. The application
treated in detail involves such combinations used with damping screens
for the reduction of wind--tunnel turbulence.

The authors wish to acknowledge the assistance of Messrs. I. A.
Kenerson and M. J. Noble_ who mademanyof the installations and obtained
someof the data.

SYMBOLS

x distance along axis of duct or diffuser

r radial distance from axis of duct or diffuser

R maximum radius of duct or diffuser

D diameter of duct or diffuser

A cross--sectional area of duct or diffuser
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axial component of velocity

radial component of velocity

_vnamlc pressure

reference pressure; herein taken as pressure drop across inlet

nozzle of duct system (see fig. l)

reference static pressure (see fig. l)

static pressure

change in static pressure across a screen or between two points

total flow of potential (pressure) energy per second across any

section of duct or diffuser

total flow of kinetic energy per second across ar_y section of

duct or diffuser

efficiency of diffuser or diffuser-screen combination

efficiency of diffuser without taking into account energy losses

through screens

pressure-drop coefficient of screen

solidity of screen, defined as ratio of closed area to total area

Reynolds number

angle between flow direction and axis of duct or diffuser

turbulence reduction factor

Subscripts:

Subscripts 0, i, 2, . . . n refer to positions along the axis of

duct or diffuser. They also designate a quantity in a cross section

normal to the axis passing through the specified position.
Position 0 refers to diffuser entrance and t refers to test

section of wind tunnel.

Examples of subscripts:

Pressure Pl is static pressure at section i; Eij 2 is diffuser

efficiency between sections 1 and 2. Symbols are sometimes used

without subscripts when the meaning is clear -- on curves, for

example. Symbol E or E _ without subscripts means diffuser
efficiency between section 0 and some section at x.
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DEFINITION OF TERMS

Efficiency

In a diffuser the cross section of a stream increases and the

velocity decreases in the direction of flow. In an efficient diffuser

the &oss in kinetic energy appears largely as potential energy in the

form of a pressure rise. The customary definition of the efficiency of

a diffuser, and the one used herein, is

E= Gain in potential energy

Loss in kinetic energy

There are various ways to express gain in potential energy and loss

in kinetic energy. For example, since p and q are the potential and

kinetic energy per unit volume, respectively, the efficiency between two

points may be expressed as

p2 - pl (l)
El'2 = ql -- q2

where point 2 is downstream from point i. If p and q are constant

over cross sections i and 2, the diffuser efficiency between these two

sections is given by equation (i). If section i is at the beginning

and section 2 is at the end of a diffuser, equation (i) expresses the

efficiency of the diffuser. Because of the effect of the shape of the

walls, the presence of a boundary layer, and possibly separation of the

flow, p and q are never entirely constant over any cross section.

Consequently the efficiency between two sections of a diffuser can be

expressed exactly only in terms of the flow of potential and kinetic

energy through the two sections. Thus the exact expression for the

efficiency is

P2 - PI

El, 2 =
K 1 - K2

(2)

where

_0 A2P2 = P2U2 dA _0 AIPI = PlUl dA

_0AIK I = qlUl dA
_0A2K 2 = q2u2 dA

k."
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In theoretical derivations, equation (i) is often used in preference

to equation (2) because of the simplicity attending the use of p and q.

In some cases equation (i) is a sufficiently close approximation for

practical purposes, especially in narrow-angle diffusers and in cases

when the efficiency is high - say, 80 percent or greater.

In the present investigation equation (2) was always used to

calculate efficiencies from experimentally determined quantities. Values

of P and K were determined by graphical or numerical evaluation of

the foregoing integrals. It was found necessary to sacrifice accuracy

for convenience by using the velocity corresponding to q in place of

the axial velocity u because of the difficulty of measuring u sepa--

rately. Obviously this procedure involves an error when v is not zero,

but the error is of the same order as the experimental error in the

measurement of q.

It is convenient to make use of an efficiency E' which does not

include losses due to the screens themselves. If E' is used when

screens are present, it denotes the flow efficiency of the diffuser as

affected by screens. It is referred to as "flow efficiency."

Filling

Filling is a term used rather loosely to denote that, either because

of diffuser design or of the effect of a screen, the flow takes place

throughout all available volume in the diffuse_ In this sense it means

absence of separation. Although the presence or absence of separation

is an important flow criterion, still another is the velocity distribution.

In order to include both of these, a filled condition might be defined

as one in which the velocity distribution at every section is similar to

that at the diffuser entrance. This definition has the objection that

it ignores the effect of the geometry of the diffuser on the flow

pattern. The present results are given in such form that performance

may be judged either by the separation criterion or by the similarity

criterion.

Use is made of charts called streamline diagrams, which consist of

lines indicating the radial distances within which 0.1, 0.2, 0.3, and

so forth of the total observed flow occur. In computing the total

observed flow when separation was present, the reverse flow near the

wall was neglected. In these cases the observed volume was generally

a few percent too high, and the lines are not accurately streamlines.

Pressure-Drop Coefficient k

By definition the pressure-drop coefficient of a screen is

k = Ap
q
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where q is the dynamic pressure of a uniform parallel flow approaching

normal to the plane of the screen and Ap is the static--pressure drop

across the screen. The value of k is determined experimentally by

measuring q and _p. The coefficient depends on the solidity S and

on a Reynolds number equal to the diameter of the wire times the velocity

corresponding to q, divided by the kinematic viscosity.

The coefficient k is useful for calculating Ap when the flow is

normal to the screen. The pressure drop may be abnormally high if the

stream approaches the screen at a considerably large angle to the normal.

In any case k is used as a parameter for connecting a given screen with

its aerodynamic effect , such as its effect on turbulence and on the space

distribution of velocity.

APPARATUS ANDMETHODS

General Arrangement

The apparatus for investigating diffuser--screen combinations is shown

in figure 1. It consists essentially of a diffuser with a cylindrical

entrance duct 18 inches in diameter and a cylindrical exit duct 36 inches

in diameter. A centrifugal fan, wit_ its intake at the end of the large

duct, drew air through the system. Airspeed was controlled by adjustable

inlet vanes on the fan. The top speed was somewhat in excess of lO0 feet

per second in the entrance duct, this speed depending on the amount of

resistance present. Since the exhaust was far from the entrance and the

room was large, disturbances at the entrance were usually small.

Screening on the entrance nozzle was found to improve the steadiness of
the flow.

The entrance duct consisted of four 3--foot sections, so that its

length could be varied to change the thickness of the boundary layer at

the diffuser entrance. With the full 12--foot length, the boundary layer

was about 3 inches thick and the velocity was uniform over a central

core 12 inches in diameter. When fully developed turbulent pipe flow was

desired at the diffuser entrance, the boundary layer was artificially

thickened by screens with cut-out centers placed in the duct 9 feet

ahea_ of the diffuser. The boundary layer was turbulent in all cases.

Diffusers

Most of the measurements were made with diffusers A and B shown

in figure 2. These were essentially wide--angle conical diffusers with

rounded entrances and an area ratio of i to 4. They were built as

separate units for insertion between the 18-inch and the 36-inch ducts.

Diffuser C, shown in figure 2, was shaped to conform approximately to

the outer streamlines of a jet passing through a screen. It was not
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used extensively. The manner of installing screens is also illustrated in
figure 2. Flush mounting eliminated obstructions and prevented breaks in
the contour of the diffuser. Tension in the screens was just sufficient
to remove slack.

Instruments

It was planned to measuremeanvelocity and pressure throughout the
entire field of flow, particularly as near the walls and screens as was
practicable. With this in mind, the dimensions of ducts and diffusers were
made as large as possible to still permit the use of screen widths
commercially available.

In practice it proved difficult to make static-- and dynamic--pressure
traverses near the upstream side of a screen with instruments of
conventional design. After experimenting with several arrangements
of pitot-static tubes, the two shown in figure 3 were adopted.
Instrument A was of nearly conventional design and could be used where
there was sufficient room - for example, where no screens were present,
or downstreamfrom a screen. Instrument B was that used for making
measurementsupstream from screens and between them. With this
instrument continuous traverses could be madewithin 1 inch of the
upstream side of a screen. Both instruments read true static and
dynamic pressure to within 1 percent at zero angle of incidence.
Characteristics at other angles are given in figure 4.

Velocity and pressure distrib_0ions were determined by traversing
along ar_vchosen diameter with one or the other of these instruments.
The support memberextended completely across the stream to provide
strength and side--to-side symmetry. The tubes were always alined with
the axis of the duct system; this meant that the flo_, particularly near
a screen, often approached them at a considerably large angle. Possible
errors from this source, as calculated from figure 4, were not significant
in the over-all result, and hence no corrections were applied.

The directions of streamlines derived from velocity measurements
were checked by meansof a thin metal strip about 3/4 inch wide, coated
with volatile oil and lampblack and placed along a diameter edgewise
to the flow. Air was allowed to flow until the oil had evaporated,
after which the pattern of streaks on the strip showedthe average
direction of the flow at each point along the diameter.

Screens

The principal characteristics of the screens used in this investiga-
tion were a large numberof meshesper inch, small wire size, and low



8 NACATN No. 1610

solidity. The first two, normally described as the fineness, are essential
if irregularities in dynamic pressures close to the downstreamside of
a screen are to be avoided. Present work was limited to screens of low
solidity.

Since the value of k depends on the screen Reynolds numberas well
as on the solidity, values of k were determined for each screen at
various wind speeds. This was done on samples placed in the 18-inch duct,
and measurementswere madeat the center where q was uniform and the
flow was normal to the screen. Measuredvalues of k are given in
figure 5 as a function of S at several Reynolds numbers. The theoretical
curve of Eckert and PflUger (reference 3) is also shown. The discrepancy
between theory andexperiment is the samehere as in reference 3 for
screens of low solidity. Basic data on the screens used in the present
work are summarized in table i.

It is pointed out that a precise value of k for a screen in a
diffuser is not particularly significant because speed and direction of
flow vary from point to point over the area of the screen. Values given
in connection with various arrangements are those corresponding to the
average velocity based upon the total flow and the total exposed area of
the screen.

EXPERIMEI_TSWITHSINGLESCREENS

Procedure

Systematic measurementswere madewith single screens at various
positions in diffuser A. For each screen and each position, static--
and dynamic--pressure traverses were madeacross two diameters 90° apart
at several locations. Representative distributions across a section were
obtained by averaging values on the two diameters. Enough locations were
selected in each case to define the flow characteristics through the
entire diffuser. Whenpreliminary tests showedthat there was no
significant effect of Reynolds number, except on the value of k, all
measurementswere madeat a single wind speed of about i00 feet per
second in the entrance duct.

For the work on single screens the entrance duct was 8 diameters
(12 ft) long. This produced a turbulent boundary layer about 3 inches
thick. According to reference i, diffuser efficiency decreases with
increasing length of the entrance duct up to 6 diameters but changes
little thereafter. An entrance length equal to 8 diameters was therefore
chosen as representative of the most severe conditions under which a
diffuser would be used in practice.
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Results with Diffuser A

Manymeasurementswere madewith diffuser A because these were not
complicated greatly by the inclination of the flow to the axis. In other
words, reliable results could be obtained with pitot--static tubes parallel
to the axis. From a large numberof results involving somerepetition,
there have been selected for presentation representative samples which
convey all the pertinent information. These have been condensedin the
form of streamline diagrams which bring out the salient features.

Figure 6 pertains to diffuser A without screens. The changes in
kinetic and potential energy and the resulting efficiency are shownby
the top row of diagrams. A value of efficiency from a curve such as
this always meansthe efficiency of that part of the diffuser up to the
section located at the chosen value of x/D0. In the middle row the left-
hand diagram showsthe distribution of dynamic pressure across four
sections, while the right--hand diagram shows the streamlines and the
region of flow separation, the shaded region demoting the wake region
between the 1.0--streamline and the wall. This latter diagram is given
mainly to show where separation occurred. It is quite inaccurate because
the flow was not symmetrical and because there was a large apparent
increase in volume flow due to recirculated air downstreamfrom the
section at which separation began. The two diagrams in the bottom row
show the pressure distribution across several sections and along the
streamlines.

It was difficult to makeany measurementsin the absence of screens
because of the whipping of the stream from side to side. In fact the
stream was so unstable and the speeds were so variable in the downstream
half of the diffuser that little meaning is attributed to the readings.
The approximate distribution of q/_r is given across the downstream
end, but energy changes, efficiency, and streamlines are given only part
way through the diffuser. Oneof the more noticeable effects of a screen,
which cannot be shown in diagrams of meanvalues, is the remarkable
steadying effect on the flow.

Figures 7, 8, and 9 give the results for screens in various positions.
Figures 7(a), 7(b), and 7(c) give an over--all picture of the energy
changes, efficiency, and streamlines for five different screens in
three selected positions.

Figures 8(a), 8(b), and 8(c) show, on the left-hand side, the
distribution of Qvnamicpressure at the entrance and at various locations
within the diffuser. On the right--hand side is shownanother type of
streamline diagr_nbetter suited than that of figure 7 to show the degree
of filling of the diffuser. In this type of diagram the streamlines are
equally spaced horizontal lines if the flow is perfectly uniform. If the
flow is not uniformbut maintains a similar pattern throughout the
diffuser, all streamlines are still horizontal and straight but not
equally spaced. Departures from these conditions are readily apparent
and this type of diagram shows at a glance the extent that the diffuser
is filled. It must be pointed out that similarity of flow is only a
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qualitative test for filling, as the shape of the diffuser itself makes
the flow pattern dissimilar to that in the entrance duct. However, this
effect is not appreciable in the present case. If filling is regarded
as simply the absence of separation, the shaded regions in the figures
are suitable indexes.

Figures 9(a), 9(b), and 9(c) show the distribution of static pressure
normal to the axis of the diffuser at various sections and the distribution
of static pressure along streamlines.

Results for screens placed at the extreme downstreamend of the
diffuser were much like those in figures 7(c), 8(c), and 9(c) and have
therefore been omitted. Obviously this diffuser cannot be filled
throughout by meansof a single screen. Whenthe screen is in the most
forward position (x/D0 = 0.67), increasing k removes separation and
fills the diffuser fairly well upstream but fails to do so downstream.
Whenthe screen is in either the middle or rearward positions, increasing
fills the diffuser downstreambut not upstream.

A few tests were madeof diffuser A with a l_-inch annular space at

the periphery of the screen. It was believed that free area at the wall
would be an effective meansof delaying or preventing separation. However,
in the cases tried the free space had very little effect. It was then
thought that a free space might be more effective in a diffuser of
wider angle.

k

Results with Diffuser B

Figure i0 gives the results of tests of diffuser B without screens.
This figure is of the sametype as figure 6. Comparison of figures 6
and lO shows the earlier separation in the diffuser with the wider angle.
Separation was so definite and clean-cut in diffuser B that the flow
took place as a free Jet through the center and was relatively steady.

Tests with single screens in diffuser B were madeonly to determine
the effect of a free annular space between the screen and the wall. The
results are given in figures ll and 12, which give the sametype of
information as figures 7, 8, and 9. It can be noted that the annular
space has scarcely arayeffect on the filling but tends to increase the
efficiency E, particularly if a large drop in static pressure exists
near the wall whenthe screen spans the entire diffuser. As shownby
figures ll(b) and ll(c), the spill through the annulus produces peaks
in the curves of q/qr" However, this spill does not improve the
performance of the diffuser appreciably. In fact it may involve an
unstable condition resulting in pulsating and nonsymmetrical flow. It
was concluded that, inasmuch as the greatest energy losses occur at the
screen in the central core of the stream and diminish to zero through the
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low-velocity region near the walls, an annular space in the low-energy
region near the walls had little if any value. In these cases higher
efficiency with more uniform flow resulted from substituting a screen
having a low value of k spanning the entire diffuser instead of
providing annular space around a screen of higher value of k.

Results with Diffuser C

From the results with single screens in diffusers A and B, it was
thought that a single screen might be effective in filling a properly
shaped diffuser. Diffuser C was constructed to test this hypothesis.
Before designing this diffuser, the 18-1rich duct was connected to the
36-inch duct to form a so-called 180° diffuser, and a 40--meshscreen
was placed about 24 inches downstreamfrom the Joint. Measurementswere
madeto determine the outline of the Jet approaching and leaving the
screen in order to be able later to shape a wall to the "natural"
streamlines. A wall thought to be of suitable shape was then constructed,
but modifications had to be madeby cut-and--try methods until diffuser C
was finally obtained.

The results with diffuser C are given in figure 13, which shows
that the diffuser remained fairly well filled. The curves of q/qr
show considerable boundary layer and someasymmetry in the flow at
section D.

MECHANICSOFDIFFIFSIONAIDEDBY SCREENS

With the aid of the results presented In the foregoing sections, an
attempt is madeto explain the mechanics of flow through diffuser--screen
combinations. The experiments show characteristic behaviors for which
possible explanations are advanced. Previous theories (reference 2 and
some informal Germanliterature) deal with the passage of an initially
uniform stream through a screen or porous wall. It is apparent now that
such theories fail to deal with the real problem. A diffuser problem
exists only when there is a nonuniform stream which can becomeeven less
uniform in an adverse pressure gradient or when there is a boundary layer
which can separate. Of these twoj boundary--layer separation is the more
important, and the problem may be regarded as a combined boundary-layer
and screen problem. This kind of problem is so involved that a theoretical
approach has not been possible. Furthermore, a complete theory can hardly
be expected until problems of the turbulent boundary layer and turbulent
separation have been dealt with successfully.

It may be well to review the present-day physical picture of turbulent
separation. So far as is known, separation never occurs unless the flow
is proceeding into a region of higher pressure, that is, unless an adverse
pressure gradient exists. Under this condition the fluid near the wall
is retarded both by wall friction and by the pressure gradient. Separation
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occurs when the resultant retarding action is sufficient to bring the
flow to rest in the neighborhood of the wall, in spite of the propelling
action of the turbulent shearing stresses from regions farther removed
from the wall. Turbulent shearing stress bears no simple relation to
velocity gradient as does viscous shearing stress, but it increases with
velocity gradient. Quantitative relations for these processes are still
lacking, but the general picture is helpful, since it shows that
separation may be prevented by decreasing the pressure gradient along
the surface or by increasing the velocity gradient normal to the surface.
The latter is often regarded as equivalent to decreasing boundary-layer
thickness, but in sometypes of velocity distribution boundary-layer
thickness has little meaning. The behavior of screens is interpreted
in terms of these two effects.

Flow Hp to a Screen

It can be observe_, for example in figure 7(c), that a stream
diverges as it approaches a screen. To find a reason for this and the
conditions on which it depends, consider for the momenta free cylindrical
Jet impinging against a solid wall. As the wall is approached, the
streamlines bend away from the axis and finally becomenearly parallel
to the wall. Centrifugal pressure gradients accompaz4yingthe curvature
give rise to pressures which increase toward the axis and toward the
wall. The velocities decrease correspondingly in accordance with
Bernoulli's law. If the wall is porous, much the samething happens
but to an extent which decreases with increasing porosity.

By thinking now in terms of solidity or parameter k rather than
of porosity, it is obvious that the stream passes through with more
and more of the original concentration about the jet axis as k is
decreased. However, not all the Jet flow passes through in a finite
area unless the Jet is constrained as it approaches the screen. A
diffuser provides such constraint, and its size and shape are as much
a part of the problem of the resulting velocity and pressure field as is
the value of k of the screen.

If the friction effects of a wall could be neglected, the design
of a diffuser would be reduced to shaping a wall to conform to any one
of the streamlines of a field of flow associated with a given stream
approaching a given screen. If friction is now taken into account but
regarded as significant only in connection with separation, a streamline
would be chosen along which the pressure gradient is too small to cause
separation. This was attempted in the design of diffuser C without
success. The difficulty was that the boundary layer accompanying the
wall modified the velocity distribution and the pressure field. In
short, a successful design was not possible without considering the
problem as a whole. A shape may be found by trial and error, as was
finally done in the case of diffuser C.
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Consider next a diffuser which is not shaped to streamlines along

which the pressure gradients are small enough to prevent separation,

such as diffuser A. Figure 7 shows that separation always occurs unless

a screen is well upstream. It is interesting that a screen does prevent

upstream separation without specially shaped walls, and it would be

desirable to kno_the way in which this is accomplished.

Since the pressure gradient is known to be an important factor in

separation, examine the pressure distribution along the wall of the

diffuser. Figures 6 and 9 show the distribution of static pressure

along the streamlines. Where the flow has not separated, the pressure

distribution along the 1.0-_treamline is identical with that along the

wall. Thus in figure 9(a) the 1.0-curves for the 40- and 50-mesh screens

give the pressure distribution along the wall at a distance somewhat

beyond the screen. In figure 6 or figures 9(b) and 9(c), the 1.0-curve

gives the pressure distribution along the wall up to the first separation

point, which is in the neighborhood of x/D 0 = 0.40 A comparison of the

pressure distributions shows that the total increase in pressure up to

the 0.4--point is about the same with and without separation, but the

rate of rise is much greater at the 0.4--point without separation.

Therefore the screen has done nothing to the pressure along the wall

that would be expected to prevent separation.

On continuing the examination of the static--pressure variation

along streamlines, it is noted that a screen always causes the greatest

rise in pressure along the O-streamline. Attention has been called to

this phenomenon in connection with the curvature of the streamlines. In

a pressure field of this sort, by Bernoulli's law, the velocity decrease

is greatest in the central part of the stream. It follows that air must

be diverted toward the walls by the screen. This increases the velocity

gradient, and consequently the shearing stress, at the wall. This seems

to be a logical explanation for the prevention of separation when th@

wall is not sl_ped to promote low pressure gradients.

The experimental results for diffuser A show that it is more

important to place a screen near the natural separation point than to

have a high pressure-drop coefficient.

Flow Downstream from a Screen

It can be observed in figure 7 that separation downstream from a

screen may be delayed or even prevented entirely by proper choice of

position and value of k. One reason for this is apparent from figure 9,

which shows an inversion of the pressure field at the screen. To the

rear of the screen the pressure is lowest at the center and increasing

radially. At some distance downstream the radial differences approach

zero, the equalization having occurred by the fact that pressure

increased most on the O-streamline. The small rise along the wall

aOcounts for the fact that the flow proceeds for a considerable distance

without separation.
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The inversion of the pressure field at a screen is accompanied by

a reversal in curvature of the streamlines and by a reversal of the

radial velocity components. This process is influenced somewhat by the

shape of the walls. In diffuser C the curvature of the wall was

reversed at the screen, in keeping with the reversal in the curvature

of the streamlines. Since the radial velocity gradients near the wall

are low for diffuser C_ the pressure gradients along the wall must be

kept very small to avoid separation. Consequently the diffuser angle

is wide only in the neighborhood of the screen.

Multiple Screens

The performance of single screens in diffuser A suggests that it

may be possible to prevent separation throughout the whole of the

diffuser by using more than one screen. Effects upstream and downstream

from screens are then superposed. As far as separation and filling

are concerned, it would appear that multiple screens in a diffuser of

arbitrary shape can be as effective as a single screen in a diffuser

of special shape. It is easier to design a diffuser of simple shape

and provide for filling it by proper choice and number of screens than

to design a diffuser of special shape.

PROBABLE EFFICIENCIES

It can be seen in figure 6 that the officlency E decreases with

the distance downstream. Estimates based on uncertain measurements

indicate an efficiency of about 30 percent at the downstream end. For

single screens in various positions, figure 7 shows that E at the

downstream end ranges from 14 to 42 percent, the amount depending on

the position and the value of k. Certainly a screen can reduce

efficiency, and apparently a screen cannot be expected to produce much

of an increase. However, the values of flow efficiency E' range

from 80 to 90 percent at the downstream end; this indicates that a

screen promotes flow efficiency even though separation is not entirely

eliminated and filling is not complete.

Flow efficiency depends primarily upon the absence of eddy losses

and so must increase with the reduction of dead-air space. This is

demonstrated by the rise from 30 percent when the dead--air space was

ex_ensive to 80 or 90 percent when the dead--air space was limited by

the action of a screen (E without screens may be compared with E'

with screens). It is apparent that the major gain is achieved by

reducing the dead-air space to a relatively small volume and that

complete filling could not produce much additional gain.
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It is emphasized that filling has different effects on E' and E.

On considering first E I, both the numerator and the denominator of

equation (2) increase with filling. For E, however, the numerator

contains negative pressure-drop terms for the screens, and these terms

are not affected appreciably by filling. They may be large to produce

filling, but their effect on E is lessened by an accompanying increase

in the denominator, that is, by increasing the degree of filling.

It may be assumed that E' has a nearly constant value of about 0.9

when the arrangement of screens is adequate to produce filling.

Therefore it should be possible to predict E by taking into account

the pressure drop through the screens. However, when nothing is known

about the distrib:utlon of p and q, the calculation must be based

on equation (1), which unfortunately gives the correct result only

when p and q are uniform over each section. Nevertheless equation (1)

is a fair approximation when the diffuser is filled and may be used for

estimating purposes. The use of multiple screens is anticipated and

the efficiency relation is set up on this basis.

On referring to figure 14 and considering the efficiency in stages,

let E0,1 be the efficiency from section 0 to the downstream side of

screen l_ El, 2 be the efficiency from the downstream side of screen 1

to the downstream side of screen 2, and so on. Then, according to

equation (1),

Pl -- P0

EO, i =
qo - ql

P2 -- Pl

El, 2 ql -- q2

P3 - P2

E2_ 3 = q2 -- q3

(3)

Since the over--all efficiency is

Pn - PO

Eo_n = q0 - qn
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it follows by substitution and rearrangement that

ql ql q2 q2 q_
i --

qo q0 qo q0 q0
÷ +

EO_n = Eo'l qn El'2 E2'3
i--- l-f_ i-_

qo q0 q0

+... (4)

It follows from equation (3) and the definition of E' that

E%I = E'

_Pl

q0 - ql

_P2

El,2 = E'
ql - q2

())

where _Pl, _P2, and so forth are the pressure drops across screens i,

2, _nd so forth. By neglecting effects of varying angles of incidence

at the screen_ it follows from the definitions that

APl = klql

_P2 = k2q2

From which

and so forth

EO, I = E'

kl

q0

ql

k 2

El, 2 = E t ql
-- i

q2

(6)
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If the q's are uniform over each section, their ratios may be

expressed in terms of area ratios, and equations (4) and (6) become,

respectively,

l - \A2,/ -",,*3,/\AI/ ",,*Z," \*2J
E0, n = E0, I + El, 2 + E2, 3 + . .

(7)

EO, I = E'
kl

El, 2 = E'

k 2
(8)

In order to use these equations, it is necessary to make some guess

about the value of E', say 0.9. The number of screens, the value of k,

and some desired efficiency are then chosen, and the positions for the

screens are calculated by equations (7) and (8). The proper choice of

screens to produce filling cannot be determined in advance; if it is

found by test that the diffuser is not filled, more screens having a

lower value of k may be substituted to maintain the estimated efficiency.

It may be impossible to fill the diffuser and keep the efficiency as high

as desired, in which case screens having a higher value of k may be

s_ostituted; this results in a lowered efficiency.

In connection with efficiencies to be expected, it is well to

point out a few obvious facts. The highest efficiency always is obtained

in a narrow-angle diffuser without screens. According to Patterson

(reference 4)_ the highest efficiencies are obtained in conical diffusers

of area ratios up to 4 to 1 when the total included angle is about 8°,

and then the highest efficiency to be expected is around 90 percent. The

efficiency decreases with increasing initial boundary--layer thickness,

so 90 percent is only a nominal value. Also the optimum angle is less

for greater area ratios. It is convenient, however, to think in terms

of an 8° angle and a 90-percent efficiency in connection with nsrrow--

angle diffusers; it should be remembered, of course, that there is nothing

very exact about either the angle or the efficiency. As the angle

increases the efficienc_ decreases, slowly at first, and separation of
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the flow soon becomes imminent. If the angle is increased and screens are

introduced to prevent separation, the efficiency must again drop

because E' cannot be expected to exceed 90 percent and E must be

less than E'. Obviously there is no lower limit to E.

If a screen of given value of k is to be introduced, the loss in

efficiency is a minlmumwhen the screen is placed at the extreme

downstream end of a narrow-angle diffuser. It then becomes possible

to widen the angle Just ahead of the screen and increase the area ratio.

In order to take full advantage of the screen, the widening should be

continued as far as possible to the rear of the screen. This means that

the area ratio is increased first without additional length by the flare

in front of the screen and second with additional length by the wide--

angle extension to the rear of the screen. For a given area ratio

and a given value of k the most efficient diffuser employing a screen

is a narrow-angle diffuser terminating in a wide angle like diffuser C.

Next consider a screen placed not near the end but at some position

farther upstream where the cross section is smaller, and again consider

the walls formed into a short section of wide-angle diffuser in the

vicinity of the screen. If the value of k is the same as in the

previous example, the stream patterns are similar and the increase in

area in the wide-angle section is in each case proportional to the

area of the screen. Therefore the upstream screen produces the smaller

area increment. Furthermore the loss in efficiency is greater because

of the greater pressure drop at the screen. If the installing of

screens is continued, each with its wide-angle portion, the original

narrow-angle diffuser is effectively converted into a wide--angle diffuser.

This process can result in an increased area ratio or a shortened diffuser

with the original area ratio. Obviously a continuous widening may be

substituted for the stepwlse widening if there is a sufficient number

of screens. Each addition of a screen has decreased the efficiency, and

the efficiency has therefore decreased with widening of the angle.

By using the foregoing example, the efficiency may be examined

in a different light to get some idea of the probable upper limit of

efficiency. It can be observed in figures 9 and 13 that in no case

does the over-all increase in static pressure in the central part of

the stream exceed that along the walls. The only way then for the

efficiency to be greater than zero is to have a net gain in pressure

along the walls. The foregoing example is convenient for the reasoning

that follows, for, Just as in diffuser C, each screen is assumed to

reduce the pressure gradient sufficiently to prevent separation. The

maximum permissible _ressure gradient along the walls is not known, but

it is reasonable to suppose that it could not be materially different

from that along the walls of an 8° diffuser with the same area ratio

as some wide--angle diffuser in question. If it is the same, the ratio

of the efficiency of a wide-angle diffuser to that of an 8° diffuser
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with the same area ratio is equal to the ratio of their respective wall

lengths. By taking this ratio and assuming the efficiency of an 8° diffuser

to be 90 percent, the predicted maxlmum efficiencies of diffusers A, B,

and C are:

Diffuser

A

B

C (wide--angle

portion only)

Maximum efficiency

(percent)

Predicted

26

9

3O

Observed

24

According to the foregoing reasoning the upper limit of efficiency

is determined by the wall length. Nothing in the experiment is in

conflict with this conclusion. In one case the efficiency of diffuser A

was found to be 42 percent, but in this case the diffuser was far from

being filled. When a wide--angle diffuser is filled in the sense that

the velocity is relatively high near the walls, the adverse pressure

gradient may be higher along the walls than it could be in an 8° diffuser;

but in all such cases there will be an abrupt drop in the pressure on

the wall at a screen. These drops can reduce the efficiency without limit,

the reduction depending on the number and the value of k of the screens.

It should be borne in mind that the present argument concerns the

probable upper limit of efficiency.

Obviously screens are not the proper devices to obtain high

efficiency. Screens are generally considered in applications when

efficiency is not of primary importance, such as the wind-tunnel

application taken up in the following section.

EXPERIMENTS WITH MULTIPLESCREENS

Remarks on Application to Damping Screens

Experiments with multiple screens in diffusers A and B were carried

out with a particular application in mind, namely, the use of damping

screens in wind tunnels to reduce turbulence. One of the objects was

_o confirm the conclusion that even a very wide-angle diffuser

(diffuser B) could be filled by using screens. The reasons for the

screen arrangements are given in the following paragraphs.
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As described in reference 5, damping screens are effective devices
for reducing wind--tunnel turbulence when they are placed upstream of
the test section of a tunnel. For reasons of power economythe screens
are placed ahead of the entrance cone where the velocity of the stream
is a minimum. Even if screens are not used, it is always desirable to
make the contraction ratio across the entrance cone as large as possible,
and this is usually accomplished in return--circult tunnels by composing
the return circuit of narrow--angle diffusers. As mentioned in the
INTRODUCTION,it was found that when damping screens were used, the
contraction ratio could be further increased without lengthening the
tunnel by terminating the narrow--angle diffuser with a short section of
wide--angle diffuser. This is illustrated schematically in figure 14,
where for the present purpose multiple screens are shown. Without the
wide-angle diffuser the contraction ratio would be Ao/At. With the
wide--angle diffuser the contraction ratio is An/At .

Whenscreens are used solely for the reduction of turbulence, the
aim is to use as manyscreens as possible or as high a value of k as
is consistent with the allowable reduction in energy ratio of the tunnel.
Obviously the power consumedin pressure drop across screens always is
reduced by the addition of the wide-angle diffuser. It is Just as
obvious that the use of screens always entails someexpenditure of power.
The question now is the amount of power to be expended in the screens.
In order to find a reasonable answer to this question, it is assumed
that in most modernwind tunnels the ratio AO/At is 4 or more. If
so, q0/qt is 1/16 or less, and it is assumedthat the complete loss
of qo is not too great a price in power consumption to pay for the
privilege of using screens. It is reasonable therefore to require only
that there shall be no drop in static pressure across a diffuser--screen
combination. This meansthat the ratio An/A0 may be as large as
desired and that the over--all efficiency of the wide--angle diffuser is
to be zero.

Since the purpose of damping screens is to reduce turbulence, it
is of paramount importance that there be no flow separation in the wide--
angle diffuser. It is also important to have the meanvelocity uniform
at the exit of the wide-angle diffuser. Since the proper design of a
diffuser to prevent separation with a single screen is a difficult matter,
multiple screens in a simple diffuser were believed to be the practical
answer to the separation problem. Various numbers of screens were
therefore tried in diffusers A and B.

The original intention when the screens were installed was to aim
for an over--all efficiency of zero. This work was done before the
significance of E' was realized, and it was assumedthat it would be
permissible to attribute all losses to the screens. Accordingly a
zero efficiency for each stage (each screen) was calculated by use of
equation (8) by assuming E' = 1. This gaye the following relations
for the cross-sectional areas in which the screens were to be placed:
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(9)

i
A1
A-7= (_z+ z)2

z_

A2 = (ke+ z)2
A1

For the over-all area ratio,

1 1 1

A_= (kl+l)_(k2+l) g. • • (_+i) _
AO

(io)

And if the k's for all screens are identical, equation (10) reduces to

n

= (k+ i)_
"A0

which states that, since the area ratio of the diffuser is specified,

the number of screens necessary to attain zero efficiency is fixed by k.

Insofar as this relation is concerned, a single screen having a high

value of k would give the same result as several screens, each with

a low value of k. However, separation of flow within the diffuser is

determined not only by the flow pattern of the stream, area ratio,

value of k of the screen, and number of screens, but also by the

screen spacing. The tests showed that the first screen, even a screen

having a high value of k, must be placed well upstream in the diffuser

to prevent separation. It is therefore apparent that, if a given

efficiency is to be maintained without flow separation, not only must

equation (9) be satisfied, but also the diffuser length up to the

first screen 3 or between successive screens, must be limited. This

effectively limits the upper value of k for the screens in any

particular diffuser.

An interesting result follows from equation (lO) and the relations

for damping screens given in reference 5. According to reference 5, the

turbulent fluctuations are reduced on passing through a screen in the

ratio

1

1

(k+ i)2

And if several screens are used in tandem with a spacing of several

inches or more between them, the fractional reduction over the group is
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1
f : (il)

i l !

(kI + 1) 2 (k2 + 1)2 . . • (kn + 1) 2

It follows from equations (i0) and (ii) that

A 0
f = -- (12)

Equation (12) states that the reduction of turbulence is independent

of the number of screens and the value of k; that is, it depends only

on the area ratio of the wide-angle diffuser. The physical explanation

of equation (12) is that, when screens are positioned by the relations

given by equation (9), the fall in mean velocity from screen to screen

is the same as the reduction in turbulence across each screen. For the

diffuser as a whole the mean velocity is reduced in the same ratio as

the fluctuations; this results in a decrease in absolute turbulence, but

the percentage turbulence in section n after the last screen is the

same as in section 0. If the absolute turbulence remains constant as

the stream is accelerated in passing through the entrance cone, the

ratio of the absolute turbulence to the mean speed, or percentage

turbulence, must decrease with the increase in speed. Any reduction in

percentage turbulence in the test section must result either from

additional screens placed in or at the exit of the diffuser or from

the larger contraction ratio made possible by the diffuser. In this

treatment a possible effect of expansion and contraction on the

fluctuations has been neglected. Some discussion of this subject can

be found in reference 5.

Results for Multiple Screens

The main results for multiple screens are given in figures 15(a),

15(b), and 15(c) for diffuser A and in figures 16(a) and 16(b) for

diffuser B. Inspection of these figures shows that there is slight

separation only with the two 54--mesh and one 30-mesh combination in

diffuser B. Separation was not prevented with this combination because

the lengths ahead of the first screen and between successive screens

were too great. The value of k of the 54--mesh screen is obviously

too high to satisfy equation (9) when it is placed in a position

sufficiently far upstream to prevent separation. In general the filling

ahead of the first screen improves with the number of screens because

the first screen is then placed farther upstream in accordance with the

relations of equation (9), but beyond the first screen the number of

screens has little effect on the filling. The dynamic pressure is

remarkably uniform at the downstream end of diffuser A , as shown in

figure 15(b). For diffuser B, as shown in figure 16(b), it is only

slightly le_s uniform.
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On considering the efficiencies shown in figures 15(a) and 16(b),

it can be observed that over-all efflciencies were less than zero and

not all values were the same. There are several reasons for this. On

considering diffuser A first, it is seen in figure 15(a) that the over--.

all efficiencies range from -5 to nearly --15 percent. This is partly

accounted for by the fact that E g is between 90 and 95 percent instead

of 100 percent as assumed. Most of the remainder and the dispersion in

values are caused by failure of the position of the final screen to

come at the downstream end of the diffuser. This meant putting in too

many 30-mesh screens and too few 40-mesh screens. The six 22--mesh

screens were about right, but these screens were all shifted downstream

slightly in an effort to bring the over-all efficiency nearer to zero.

It is remarked that the efficiency may always be improved by moving

screens to larger cross sections, and this is permissible as long as

filling is not impaired. With the six 22--mesh screens it is believed

that the filling ahead of the firstscreen would have been satisfactory

even if the screens had been shifted far enough to give an efficiency

slightly above zero.

For diffuser B, five 30-mesh screens are too many and three

40-mesh screens are too few, as in diffuser A. The two 54-mesh and

one 30-mesh combination is about right. Figure 16(b) shows that the

over--all efficiency with the right number of screens is about --25 percent.

Approximately -lO percent can be accounted for by an E' of 90 percent,

but --15 percent must be accounted for in some other way. In these cases

the pressure drop through the screens is greater than the calculated

drop because of the angle at which the flow passed through some portions

of the screens. Figure 16(a) shows angles to the normal as much as 45 °.

The abnormally high pressure drop through screens in diffuser B

is illustrated in figure 17, where a comparison is shown between

diffusers A and B for the 30- and 40-mesh screens. The values of k

for the screens are labeled the same in each diffuser because they would

be the same for normal flow incidence. However, in diffuser B the
effective value of k is seen to be about doubled for all but the

first screen because of the angle of flow. For diffuser A the departure

from normal incidence is not sufficient to produce a significant effect.

Figure 18 shows the results of a test in diffuser B to find the

effect of initial velocity distribution. The curves of q/qr labeled "A"

in figure 18(a) show the usual distribution in the left--hand diagram,

called "flow patter_I" and a simulated fully developed turbulent pipe--

flow distribution in the right--hand diagram, called "flow pattern If."

For this test an attempt was made to compensate for the abnormally high

pressure drop through screens by shifting all screens downstream and

using one less screen than would have been used by following the

relations of equation (9). It can be seen in figures 18(a) and 18(b)

that transition from pattern I to pattern II resulted in slightly lower

final efficiency, a little less uniformity in the final distribution

of q/qr, and slightly poorer filling. However, the over-all effect

was small.
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The effect of transition to a very thin initial boundary layer was

tested in diffuser A with all the multiple-screen combinations. For

this experiment a large section of the entrance duct was omitted and

the entrance nozzle was connected with only 3 feet of duct to the

diffuser. In these cases no effect could be found. It may be concluded

that when as many screens are used as in the present _xperiments with

multiple screens, the initial velocity distribution has no substantial

effect on performance.

It may be considered that in a flow system wlth no pressure rise

there should be no flow separation. Any diffuser, regardless of the

width of the angle, approaches such a system when screens are positioned

by the relations of equation (9), and the number of screens increases

without limit. This serves to emphasize the importance of number of

screens and of the minor role played by initial velocity distribution

and diffuser shape and angle when the number of screens is large.

Diffuser B was selected as an extreme case, and it was not expected

at the outset that the results would compare as favorably with those of

diffuser A as they actually did. On considering the question of the

selection of a diffuser to be used wlth damping screens, it appears that

about the only drawback to extreme angles is a reduction in efficiency

from the abnormal pressure drop through screens. Some additional

reduction in turbulence might be realized because of an apparently

higher effective value of k, but it still remains to be shown that

this would actually be the case.

As pointed out in reference 5, seams in screens produce turbulent

wakes in which the turbulence is much above the general level. Other

irregularities such as patches or dirt may have similar effects. With

a diffuser such effects may be magnified because wakes may grow rather

than diminish because of the adverse pressure gradient. There was some

evidence of this obtained in diffuser A, where in one of the tests the

wake of a small patch on the second screen could be detected In the

velocity distribution after having passed through the remaining four

screens. Although the evidence on this point is meager, it is well to

be aware of the possibility that seams, patches, or large particles of

dirt may produce some unwanted results.

CONCLUBIONS

The following conclusions may be drawn from the results of a low--

speed experimental investigation of the filling effect observed when a

screen or similar resistance is placed across a diffuser:

i. There is a spreading effect on a stream that flows through a

screen when the stream is unbounded or is bounded by a region of low

velocity. The spreading action depends on the initial velocity

distribution, on conditions at the stream boundaries, and on the

pressure-drop coefficient of the screen.
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2. A screen can prevent separation or restore separated flow in a

diffuser. The mechanics of the process is intimately connected with the

mechanics of turbulent boundary--layer separation. The screen may prevent

separation either by increasing the normal velocity gradient near the

diffuser wall, by decreasing thepressure gradient along the wall, or by
a combination of these two effects.

3. Separation may be prevented and a filled condition obtained

throughout a properly shaped diffuser by a single screen or throughout

a diffuser of arbitrary shape by using a sufficient number of appropriate

screens properly spaced.

4. A filled condition and uniform velocity distribution may be

attained downstream from a single screen in a diffuser of arbitrary shape

even in the presence of separated flow upstream from the screen. Such

screens have a stabilizing effect on the flow so that speed fluctuations

normally resulting from such separation are greatly diminished.

5. Annular space around the screen near the diffuser wails had

little beneficial effect upon the diffusion process. Such a space may

actually be detrimental by destroying the symmetry of flow.

6. For the same energy loss, a filled condition upstream from a

screen is maintained better with a screen of low pressure-drop coeffi-

cient near the natural separation point than with a screen of higher

coefficient downstream from that point.

7. Diffuser efficiency generally is low when the prevention of

separation depends on the action of one or more screens. The principal

losses are due to the pressure drop through screens. Rough estimates

of efficlencymay be made in ar_y given case.

8. The use of wide--angle diffusers in wind tunnels in combination

with damping screens is shown to be one application to which diffuser-

screen combinations are well suited. When screens are properly

distributed through the diffuser there is no danger of separation and the

flow has a high degree of uniformity. The performance is not critical

to the diffuser shape or to the initial velocity distribution. When

the total included angle of a diffuser is not greater than about 30 °,

there is only a negligible pressure drop across three screens having an

average value k = 1.25, five screens'having an average value k = 0.76,

and six screens having an average value k = 0.57. For these cases the

turbulence reduction factor should be about the same as the area ratio

of the wide--angle diffuser.

National Bureau of Standards

Washington, D. C., June 25, 1947
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TABLE 1

SCREENS USED IN DIFFL_ERS

Meshes per
inch

22

30

Wire

diameter

4O

5o

a75

(in.)

0.0075

.0065

.0065

.0055

.0055

Solidity,
S

0.303

.352

.452

.474

.506

k

at RN = 200

0.54

.74

i.21

1.38

1.69

2.90 nominal

aThe 75-mesh screen is a silk bolting cloth. It was not possible
to measure the thread diameter with sufficient accuracy to

determine solidity. All other screens are wire cloth.
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-(approx,)

(o) Instrument B.

%

(b) Instrument A

Figure 3.- Pitot-static tube assemblies. Instrument A used

in back of screens; instrument B used ahead of and between

screens.
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Figure ii.- Continued.
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Figure Ii.- Concluded.
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(a) Single 22-mesh screen placed 0.29 duct diameter from diffuser
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Figure 12.- Results of tests of diffuser B with a single screen to
show effect of annular space between edge of screen and diffuser

wall. Charts showing proportion of diffuser area filled by

various proportions of total flow, static-pressure variations

along selected streamlines, and static-pressure distributions

at various diffuser sections.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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Figure 15.- Results of tests of diffuser A with various multiple screen combinations.

on
bo

o

0



1.0

.8

.6

q/qr

.4.

q/qr

'_ 22-' Mesh'_

f _ _ _ _ _ _ _ sc[eelqsr

13_

]8 16 14 12 IO 8 6 4 2 0 2 4 6 8 lO 12 14 6 18

r, Ir

(b)

l.O --
l i , j__" _ _'_ "_ " 30-Mesh

.8 screens

.6 B

e

.4

1.0

.8

.6

q/qr

.4

(r/Rx) 2

c

_ ,...Eee'' "_' _''_ "_ ''_ _'_ ''*" _
.2

C
t8 16 14 2 I0 8 6 4 2 0 2 4 6 8 I0 12 14 16 18

r, in. ]Station

R

(r/Rx) _

o I
.L

.81 L

P

,61 , _ L

I

-.4 -.2 0 .2 .4

/
a_._, _ B _
• I i r -i-

"_ 4()-I_esh -L-

screens

I11

\
C

.2 4r "* k

18L6_412108 6 _ 2 0 2 4 6 e lOl_16_
r_ in.

Positions of A,B,C, and D ore shown n

figures 15(o) and 15(b)

(r/Rx) _

-.4

k - values .51 .se .s4

l! _ ?
Six 22-Mesn screens

II
II
II
II

II
I I

I I

• .G

.6 8 LO

.57 .60

1.2 1.4

x/Do

k - values .70 .73 .76 .8_

Five 50-Mesh screens

-- .9

-- A,

PROPORT ON OF TOT,_L FL(_--I:

":2 0 ._' .4 .6 .8 1.0 1.2 L4 1.6

x/Do

k- values--_-_- .17 1.25

, |,

Three 40-Mesh screens

PI_PORTIOl OF TOTAL FLOW

S g
I " I

.2 .4 ; .8

1.39
i

.$

.6

.7

.{

1.8

.64
I

D

2.0 2.2 2.4

.88

?
2.0 2.2 2.4

8_

61

41
.4

Ol_' .I O I

"-:4 -.2 0 I.O l'.2 114 1.6 1.8 2.0 I 212 2.4

x/Do A,B,G, and D refer to

traverse positions

Charts showin_ dynamic-pressure distributions at various diffuser sections and

proportion of diffuser area filled by various proportions of total flow.

Fibre i 5.- Continued.

Q

o

c

O0



54 NACA TN No. 1610

Pr--P.6 ,_ " ' ' 'D:.-__

1.2_

r, in,

16 18

Pr--l:

Stahc-pressure variations up to __.
first screen along streamlines
indicated in figures 15(a) and 15(b)--

J......... Six 22-Mesh screens

I

"-,2 0 ,2 .4
.6x/Doe 1.0 1.2

1.4 1.6

i1"i1_

r_ in,

Pr--P

_Static-pressure variations ul_to ' _ " l
first screen along streamlines I J

-indicated in figures 15(a) and 15(b)----1-_--J_

Five 50-Mesh screens

O"

'fl- "-.2 0 .2 .4 .6 .8 1.0 1.2 .4 I.S

x/D O

.4

Pr--P 6

Err -'

.8

l.C

Io

(c)

-- TireiiO- eihlsc eis -H-
____.''_, .... _' 'I,''':_ •
---- I.__ 8 m

. ',_

IkJ... ...... ._

II

18 16 14 12 10 8 6 4 2 0. 2 4 6 8 10 12 I4 16 [8

r) in.

Positions of A,B,C, and D are
shown in figures 15(o)and 15(b)

Pr--!c
T

Stat[c-pre'ssure'variaiions up to '
first screen along streamlines _ l [

-indicated in figures 15(a)and 15(b)_--
Three 40-Mesh screens

--.2 0 .2 .4 ,6 .8 1.0 1.2 1.4 1.6

x/Do

Charts showing static-pressure distributions at various diffuser

sections and along selected streamlines.

Figure 15.- Concluded.



1.0

6

r/Do .4

.2

.8

.6

(r/Rx)24

.2

.2

.4

Pr_--P¢
qr "

k- vatues---_ .70 .73.76 .82 .88 k- values LIT 1,25 1.59
!

J i "
Five 3(3-Mesl_I,, sce,nsl.= _" /-'7--_._ -.s-- Three 4(3-MeSl_screens_ _/_"_f

---_ 11 f _.__

0 Q
-:4 -.2. 0 .2 .4 .6 .8 1.0

x/D O

k- VQJUeS_ .70 .73 36 .82 .88

1.0 Five' 50-Mesh screen.,

_"_ (r/R)2

_ 3

_ _ _ _-°2_
!

-A "_2 0 .2 .4- I LO

x/D O

Static-pressure' variaiions up to first

screen along streamlines indicated in
- figure 16(b)

J 30_'Mesh Iscreens

,A

"2-.4 -.2 0 .2 .4 ,6 .8 1.0

x/Do

9
8
7
6.,
5

-.4 _2 0 .2 .4 .6 .8 1.0
x/Do

k- volues _ 1.17 1.25 1.39

-.4 -.2 0 ,2 .4 .6 .8 1.0

r/D(

(r/Rx)_

k - volues_ 1.70 1.90 0.88

I I I II A

One 30-Mesh screen _ _9_

Two 54-Mesh screen s;_ ,.,e-"
-- ..--:p.-

/
_- _ _ _'_ -

A D

--.4 --.2 .0 .2 .4- .6 .8 1.0
x/Do

k- values_ 1.70 1.90 0.88
l

Two 54-Mesh scr'eens_

- ,_

PROPORTIONOF

A S

f
9

c

--.4 -_2 0 :2 .4 .6 .8 1.0
x/Do

A,B,C, and D refer to

traverse positions

x/Do

o] Stati_:-pressure variations up to f_rst

/screen along streamlines indicated in

•2_- figure 16(b)

| I ] 40_Mesh screens I

Pr--P /

q'_-- .6 o/

.8

.0__ _° ' , ,

"".4 -.2 0 .2 .4 .6 .8 1,0
x/Do

o I I I I I I
Static-pressure variations up to first

.2-screen along streamlines indicated in-

figure 16(b)

Pr--P .4 /o/_

-¢_r "6 I /2,//_
.o IZ/4:i'-,

I
• _ Two 54-Mesh screens

One 30-i,esh screen
L&_ _._ o .2 ._ .s .8 I.o

x/Do

(a) Charts showing streamline patterns, proportion of diffuser area filled by various proportions

of total flow, and static-pressure distributions along selected streamlines.

Figure 16,- Results of tests of diiIuser B with various multiple-screen combinations.

Q

_3

O

O



. .

(b)

1,0

° /¢)

_ o

j

,4
0 .2 .4

, eoretica] value

// I'-AJ,A2)
p Observed volues _

.--_-- 50-Mesh screens
--40-Mesh screens

•----',>--Two 54-Mesh -

screens

One 30-Mesh

screen

I
E

.6 8 1.0 1.2 1.4

x/Do

.8

.6

_ o
!

c -.2 V I'1"_ ="=';

_L ,,.or,---

"40 .2 .4 .6 .8 1.0

x/Do

•_,_-- 50-Mesh screens
40-Mesh screens--

1--O1. Two 54-Mesh

screens
One 50-Mesh

screen

I.O

.8 7"" _"_T
/

.6-- _*-
ii
I:

.4

E or _'
:'.2

o 4
-.2 !

.4
1.2 1.4 0 2 .4

_50-Mesh screens
--_- 40-Mesh screens--

---_- Two 54-Mesh

screens

One 50-Mesh --

screen

F

A:"

.6 .8 LO 1.2 1.4

x/Do

aIG r

T 'er

-E ke

-o /C

161412 I0

P_

64

-_ _0 es
_, _el

I

0 24 6 8 T012"141618

r, in.

50-Mesh screens I
• IIIIII
2 Troverse E token

.4"_-- I i/D°= 3.3

- .,* r"p_ p,6

q_ .7

,8 I 2* .-

,'_ I I• ,.,..,2,o... o2..
r_ In.

_o, b- 's_
-- "91"4 S_ erl

.8_ ,-_

.6',

q/qr .5_

.4[

.31 _

.21 j

181614 I0 8 6

IStat'°n ,'.,_, 2.o,,.o,e%J

at

i

\ !
!

' I

_om 14_6_

" " I IV

Iit:
i

-..,..LL !
I1_'_

0246 8 lO l_'141618
In.

LO , , =Two _ _-

-grMesh

.8 sere
_lOne _-"

"l Mesh

6 scr_ en

"_lil

0
1816 1412 I0 8 6

Positions of A,B,C, ond D ore

shown in figure 16(o)

T _ot

] i-

2024 6810]

r_ in.

en

D(

1416 18

o 4b-k, lesl_s_reen's
.I

.2

.3

.4

I .5

I Or p.6
---_--r. 7 _,_

J
.8 F
.9

I.I _h_,

i.3

[.4, 8 161412 [0

k-

6:201 478 lOl21 618

r, in.

0

.l

.2

,3

A

.5

Pr--P'6

qT.7

.8

TWOI52_-Me'sh'screensI I I
One 50-Mesh screen _

I I I i i i i I i i i

-/Traverse E token at

/ x/Do = 5.5

," k

.9 _ ,_ c .;

Charts sho_ving changes in kinetic and potential energies, efficiencies, and dynamic-

and static-pressure distributions at various diffuser sections.

Figure 16.- Concluded.

om
o_

C_

0

o<

0



1.0

.8
(I)

.2

]

c_ o!

.2

.4
1.0 1.5 2.0

Theoretical valu, ,___

(I--Ao2/A2)

Observed values
40-Mesh screens --

Diffuser A
Diffuser B

2.5 3.0 3.5 4.0

A_ o

.8
>_

c= ,6 •
(p

"5

°11 .2
8 e
b

72

A
1.0

I
I

1.25 I.:39

P,r
40-Mesh screens

--°-Diffuser A

-_ Diffuser B

I

1.5 2.0 2.5 3.0 3.5 4.0

A/A o

....---K

I 1.0

.8

.6

E or E'.4

.2

0

p>
c3
p>

0

g
0

1.0

•_ _ojY /
cVl 4

° /
o

.2

.4
1.0 1.5

Theoretical value

(I--Ao2/A2) --

Observed values
30-Mesh screens-

Diffuser A
Diffuser B

"E

Q}

k -,-- .70 .73 .76 .82

"°I I II
.8 J I 30-Mesh screens

l .-..L _DiffuserA I

"-_'-Diffuser B ....

"' l I

J

.2

1.0

.61

or E'4
E

.2

.88

I
I
I
I
I
I

J .o---------_
_- I_.___._t

_lO 2._ _.0 _._ 4.0
A/A o

0

,2

.4
1.02.0 2.5 3.0 5.5 4.0 1.5 1.5

A/Ao

--/Z-TL_, -Mesh screens__
/ L_E; Diffuser A
"----E Diffuser B

-o- E Diffuser A --
E Diffuser B

t

Figure 17.- Comparison of test results of diffusers A and B with the 30- and 40-mesh

multiple screen combinations shown in figures 15 and 16. Charts showing changes

in kinetic and potential energies and efficiencies.



58 NACA TN No. 1610

, •=.

<i

I.C

g

__ Theoretical-

= (I-Ao2m2
bserved values -
Flow pattern T
Flow pattern ]7

r

cJ

-'_0 .2 .4 .6 .8 1.0

x/Do

>_ 1.0__, .8

_ .6

"6 .4 _ifto
•_°-I .2] [A-%,Flow;pattern rr

-.2_ 0

x/Do

1.0

.8

.6

E orE ''4

.2

0

-':2

.E
.... ,_E _

---o-Flow
---_Flow

% o ........

)atterr Z
)atterf Tr

.4 .6 .8 LO

x/Do

I._

1.2

I.I

I.

pattern TI _

"" Positions of

q/qr "_ _ io.'! i _ rA,B,C, and-

.figure below_

i Traverse El

.I

0

18 16 14 12 I0 8 6 4 2 0 2 4. 6 8 I0 12 14 16 18

r, n

k- values----,-- .5! .52.55 .6o .64

] I I= ;/i , _,9

•E--flow p?ftern I TI- ,'< _,, 1.-t- _

._ _ S,_'_ _'_-r/Do -- _ _ _" ;" ,_i,t-
_ ,__,c "_-_.-.--._--

,A '.,I b l II I}
-.4 -.2 0 .2 .4 .6 .8 1.0

x/D O

1.4

1.3

1.2

I.I

IJO

q&-
r 7

18 16 14 '2 0 8 6 4 2 0 2 4 6 8 I0 12 14- 16 18

Section eA 9% c D E ] r, n.12.5 18.o 18.o

_: - vglues_.51 .52.55 .60 .64

poTro • / /
_9_ _ G _''e_ _

5

0 • .2 .4 .6 .8 1.0 1.2 1.4

x/D O _,--"

2

0 _
1.2 1.4 -.4 "-:2

A,B,C, and D refer to

traverse positions

(a) Charts showing changes in kinetic and potential energies,

efficiencies, dynamic-pressure distributions, and

streamline patterns.

Figure 18.- Results of tests of diffuser 8 in combination with five

22-mesh screens to show effect of initial flow distribution on

diffuser perfo rmance.



NACA TN No. 1610 59

.E

(r/Rx)2

.4

.2

0
-.4

c

.2

.4

.6

Pr--P .8
qr

.0

1.2

t.4

1.6

k = values _ .51 .52 .ss .so ._4
1 [ [

Flow pattern T
,=

PROPORTION OF _ .2

, I I 5"
-.2 0 .2 A. .6 .8 1.0

x/D O

r, in

B 16 14 12 I0 8 6 4 2 0 2 4 6 8 I0 12 14 16 18
I _ I t I I I I l ] I I ]

---Flow pattern I -----

_Positions of A,B,C, and D are shown in-- ----
__ _ figures 18(a) and 18(b)

Traverse E taken at x/Do = 3.2 -- ----

=9 _

,,7_, .-._

,.6 _ _v

v

_4= _ -

-.3

- \

D

A
B

DSE

$
1.2 1.4.

A,B,C, and D refer to
traverse pos[hons

i

i

i
I

1.0

.8

.6

(r/Rx)2
.4-

.2

0
-.4.

k = values _ .51 ._ ._ ,co .s4

1 Flow pattern 13"

-.2 0 .2 .4 .6
x/D O

r, in.

Pr--P

(_3 16

A--

.6

.8

1.0

1.2

1.4;.;

1.6

,.w

I "'""
9

_,8 / -,-,--""-

_..........-.----'_
_.7

_.6
._......

4

3

2 -

9.1

,8 1.0 1.2 1.4

14 iz i0 8 6 4 2 0 2 4 6 8 I0 12 14 16 18
I i I I I ] I I I I I I I

-- nlow pattern ]E ----

-- Positions of A,B,C, and D are shown in---
_ figures 18(a) and 18(b) ____
_ Traverse E taken at x/D 0 = 3.2 ____

B .

L--

A
B
O

D&E J

r
/

/

.6

Pr P

qr .8

1.0

(b)

1.2

1.4 --

1.6
-4

Flow patt'ern I'

Statlc-pressure variationsup to

first screen along streamlines
indicated in figures 18(a) and 18(b)

/
.o/

J

.41

.61

Pr--P

1.ol

Flow per'tern h

Static-pressure variations up to

first screen along streamlines
indicated in figures 18(a) and 18(b)

i

Oi

.21--

/

l'Rl#- -.2 0 .2-.2 0 .2 .4 .6 .8 1.0 1.2 .4 4 .6 .8 1.0 1.2 1.4

x/Do x/Do

Charts showing proportion of diffuser area filled by various

proportions of total flow, static-pressure distributions at various

diffuser sections, and static-pressure distributions along selected

streamlines.

Figure 18.- Concluded.





Abstract

A low--speed experimental investigation was made of
the filling effect observed when a screen or similar

resistance is placed across a diffuser. Results are

given for three diffusers of circular cross section with

a variety of screen arrangements. The filling effect was

observed to be real in that screens could prevent sepa-

ration or restore separated flow in diffusers even of

extreme divergence and to depend on screen location and

pressure-drop coefficient. The effects of single and

multiple screens are shown and the mechanics of the

filling effect and possible efficiencies are discussed,

as well as applications to damping screens as used in

wind tunnels to reduce turbulence.
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